Telangana State Council of Higher Education, Govt. of Telangana B.Sc., CBCS Common Core Syllabi for all Universities in Telangana (wef2016-2017)

PROPOSED SCHEME FOR CHOICE BASED CREDIT SYSTEM IN BSc GENETICS

	BSC GENETICS								
FIRST YEAR- SEMESTER I									
CODE	COURSE TITLE	COURSE TYPE	HPW	CREDITS					
BS 101	Communication	AECC-1	2	2					
BS 102	English	CC-1A	5	5					
BS 103	Second language	CC-2A	5	5					
BS 104	Optional I	DSC-1A	DSC-1A 4T=2P=6						
BS 105	Optional II	DSC-2A	4T=2P=6	4+1=5					
BS 106	Optional III- Classical Genetics	DSC-3A	4T=2P=6	4+1=5					
	TOTAL			27					
FIRST YEAR- SEMESTER II									
BS 201	Environmental studies	AECC-2	2	2					
BS 202	English	CC-1B	5	5					
BS 203	Second language	CC-2B	5	5					
BS 204	Optional I	DSC-1B	4T=2P=6	4+1=5					
BS 205	Optional II	DSC-2B	4T=2P=6	4+1=5					
BS 206	Optional III- Cytogenetics	DSC-3B	4T=2P=6	4+1=5					
	TOTAL			27					
	SECOND YEAR- SEMES	TER III							
BS 301	Basic Statistics and Genetic Analysis	SEC-I	2	2					
BS 302	English	CC-1C	5	5					
BS 303	Second language	CC-2C	5	5					
BS 304	Optional I	DSC-1C	4T=2P=6	4+1=5					
BS 305	Optional II	DSC-2C	4T=2P=6	4+1=5					
BS 306	Optional III- Molecular Genetics	DSC-3C	4T=2P=6	4+1=5					
	TOTAL			27					
	SECOND YEAR- SEMES	TER IV							
BS 401	Cytogenetics- Lab Processing and Analysis	SEC-2	2	2					
BS 402	English	CC-1D	5	5					
BS 403	Second language	CC-2D							
BS 404	Optional I	DSC-1D	4T=2P=6	4+1=5					
BS 405	Optional II	DSC-2D							
BS 406	Optional III-Microbial Genetics &			4+1=5					
	Genetic Engineering								
	TOTAL			27					

	THIRD YEAR- SEMESTE	R- V						
CODE	COURSE TITLE	COURSE TYPE	HPW	CREDITS				
BS 501	Analytical Techniques in Molecular Genetics	SEC-3	2	2				
BS 502	Foundations of Genetics	GE-1	2T	2				
BS 503	Optional - I	DSC-1E	3T=2P=5	3+1=4				
BS 504	Optional- II	DSC-2E	3T=2P=5	3+1=4				
BS 505	Optional- III- Biostatistics & Bioinformatics	DSC-3E	3T=2P=5	3+1=4				
BS 506	Optional I- A/B	DSC-1E	3T=2P=5	3+1=4				
BS 507	Optional II- A/B	DSC-2E	3T=2P=5	3+1=4				
BS 508	Optional III- A/B	DSE-3E	3T=2P=5	3+1=4				
	A. Plant Genetics & Biotechnology							
	(or)							
	B. Animal Cell Technology & Animal Genetics							
	TOTAL		34	28				
THIRD YEAR- SEMESTER- VI								
BS 601	DNA Technology in Health Care	SEC-4	2	2				
	&Transgenics							
BS 602	1-1	GE-2	2T	2				
BS 603	Optional - I	DSC-1F	3T=2P=5	3+1=4				
BS 604	Optional- II	DSC-2F	3T=2P=5	3+1=4				
BS 605	Optional- III- Population Genetics & Evolution	DSC-3F	3T=2P=5	3+1=4				
BS 606	Optional I- A/B	DSC-1F	3T=2P=5	3+1=4				
BS 607	Optional II- A/B	DSC-2F	3T=2P=5	3+1=4				
BS 608	Optional- III- A/B	DSE-3F	3T=2P=5	3+1=4				
	A. Human Genome & Human Genetics							
	(or)							
	B. Cellular& Molecular Immunology							
<u> </u>	TOTAL		34	28				

Total credits= 164-12 (AECC 4 + SEC 8) =152

AECC: Ability Enhancement Compulsory Course

SEC:Skill Enhancement Course DSC:Discipline Specific Course DSE:Discipline Specific Elective

GE:Generic **E**lective

Telangana State Council of Higher Education, Govt. of Telangana B.Sc. CBCS Common Core Syllabi for all Universities in Telangana (wef2016-2017)

Department of Genetics Scheme Pattern for each optional in Genetics for BSc Course

Year	Semester	Course Type	Credits/ Theory	Teaching hours/ week- Theory	Credits- Practicals	Lab hours/ week- Practical	Dept. workload/ week/ section
FIRST YEAR	ONE	BS106- Classical Genetics	4	4	1	2	6
	TWO	BS206- Cytogenetics	4	4	1	2	6
	THREE	Bs306-Molecular Genetics	4	4	1	2	6
SECOND YEAR	FOUR	BS406- Microbial Genetics & Genetic Engineering	4	4	1	2	6
THIRD YEAR	FIVE	CORE: BS505- Biostatistics & Bioinformatics	3	3	1	2	5
		ELECTIVE: A. BS508A- Plant Genetics & Biotechnology (or) B. BS508B- Animal Cell Technology & Animal Genetics	3	3	1	2	10 (A+B)
	SIX	CORE: BS605- Population Genetics & Evolution	3	3	1	2	5
		ELECTIVE: A. BS608A- Human Genome & Human Genetics (or) B. BS608B- Cellular& Molecular Immunology	3	3	1	2	10 (A+B)

BSc GENETICS II Year SEMESTER- III SKILL ENHANCEMENT COURSE-1 (SEC-1) BS301: STATISTICS FOR GENETIC ANALYSES

Unit 1: Basic concepts in Biostatistics

- 1.1 Introduction to Biostatistics: methods of sampling- random & non-random; types of variables; types of estimates (point, interval estimates)
- 1.2 Data representation- Diagrammatic (line diagram, bar diagram, pie diagram) and graphic representation of data (histogram, frequency polygon & frequency curve)
- 1.3 Descriptive analysis: Measures of central tendency (mean, median & mode); measures of dispersion (range, mean deviation, variance & standard deviation)
- 1.4 Concepts of probability, probability distribution (binomial, normal, poisons distributions)
- 1.5 Hypothesis testing-Null and alternate hypothesis, level of significance, steps in hypothesis testing, test statistic (z test)
- 1.6 Comparison of means of two samples by t-test (paired & unpaired); features of chi-square test; Analysis of Variance (ANOVA)

Unit 2: Applications of Biostatistics in Genetics

- 2.1 Applications of probability for predicting the phenotype ratios (monohybrid and dihybrid crosses)
- 2.2 Applications of probability in human pedigree analysis (risk prediction, carrier incidence)
- 2.3 Chi-square test (for goodness of fit, for testing linkage)
- 2.4 Applications of ANOVA
- 2.5 Correlation analysis (simple & multiple correlation, drawing inferences from scatter plot & graphs, estimation of correlation coefficient & its significance)
- 2.6 Regression analysis (simple & multiple correlation)

- 1. Fundamentals of Biostatistics: Khan and Khanum. Ukaaz publications, India
- 2. Biostatistics by: N.T.J. Bailey
- 3. Biostatistics; Jayasree publishers by: VishweswaraRao K
- 4. Biostatistics; Himalaya publishing house by: Arora, P.N & Mashan P.K.
- 5. Biostatistics by: S. Prasad

BSc GENETICS II Year SEMESTER- III DSC-3C BS306: MOLECULAR GENETICS

Unit 1: Nucleic acids

- 1.1 DNA as the genetic material-Griffiths transformation experiment, Avery, MacLeod and McCarty's experiments and Hershey & Chase phage-labelling experiment
- 1.2 RNA as genetic material- tobacco mosaic virus
- 1.3 Chemistry of Nucleic acids- Nucleotides, Franklin's X-ray crystallography, Chargaff's rule, Watson-Crick model and forms of DNA (A, B &Z); types of RNA (rRNA, mRNA &tRNA)
- 1.4 DNA replication-conservative, semi-conservative and dispersive models, Meselson–Stahl experiment
- 1.5 DNA replicative enzymes (DNA polymerases, helicase, primase, ligase, telomerase, nuclease &topoisomerases) and proteins (initiator protein & single strand binding proteins)
- 1.6 Mechanisms of DNA replication-linear, circular, rolling circle, D-loop and θ -models

Unit 2: Gene expression and regulation in prokaryotes

- 2.1 Structure of prokaryotic gene (promoter, initiator & terminator regions), structure and functions of RNA polymerase & it's subunits
- 2.2 Transcription mechanism-initiation, elongation & proof reading, termination (rho independent & rho dependent); reverse transcription
- 2.3 Genetic code-properties, deciphering of genetic code, Wobble hypothesis, aminoacylation
- 2.4 Translation mechanism-initiation, elongation and termination
- 2.5 Prokaryotic transcriptional regulation (negative control & positive control)
- 2.6 Operon concept- lac operon & glucose effect, tryptophan operon

Unit 3: Gene expression and regulation in eukaryotes

- 3.1 Structure of eukaryotic gene (promoter, exons, introns, terminator, enhancer &silencer)
- 3.2 Transcriptional machinery in eukaryotes (RNA polymerases) and their structural and functional features
- 3.3 Transcription-initiation, elongation and termination
- 3.4 Post-transcriptional modifications-capping,polyadenylation,splicing and alternate splicing, rRNA and tRNAsplicing
- 3.5 Translation- initiation, elongation and termination
- 3.6 Post-translational modifications- glycosylation, lipidation, acetylation, ubiqutination and chaperones

Unit 4: Mutations and repair mechanisms

- 4.1 Mutations- spontaneous mutations (tautomerism, depurination, deamination, slipped strand mispairing, errors in DNA replication and repair),
- 4.2 Induced mutations-mutagens, physical and chemical mutagens
- 4.3 Types of mutations- transition, transversion, frame shift, silent, lethal mutations, mis-sense and non-sense
- 4.4 DNA damage &repair mechanisms-direct, excision and methyl mediated mismatch, recombinational and SOS repair
- 4.5 DNA recombination-homologous, site specific recombination and non-homologous end joining (NHEJ)
- 4.6 Diseases caused due to mutation- sickle cell anaemia and cystic fibrosis

PRACTICALS

PAPER III (BS306): MOLECULAR GENETICS

- 1. Extraction of genomic DNA from plant tissue
- 2. Extraction of genomic DNA from animal tissue
- 3. Quantification of DNA by spectrophotometer
- 4. Agarose gel electrophoresis of DNA
- 5. Estimation of DNA by DPA method
- 6. Estimation of RNA by orcinol method
- 7. Separation of proteins by SDS-PAGE
- 8. Effect of UV on bacterial growth

- 1. Principles of Genetics-Irwin Herscowitz
- 2. Molecular Biology of the gene Watson, Hopkins, Roberts, Steitz and Weiner
- 3. Genes- Benjamin Levin
- 4. General virology- Luria, Darnell, Baltimore and Campbell
- 5. Molecular Biology- David Frefielder
- 6. Practical Microbiology- Aneja
- 7. Principles and Techniques of Biochemistry and Molecular Biology- Keith Wilson, John Walker
- 8. Text book of cell and molecular Biology- Ajoy Paul; Books and allied pvt ltd
- 9. Essentials of molecular Biology by George M. Malacinski; Narosa publications

BSc GENETICS II Year SEMESTER- IV SKILL ENHANCEMENT COURSE-2 (SEC-2) BS401: CYTOGENETICS LAB PROCESSING AND ANALYSIS

Unit 1: Methods for Preparation of Chromosome

- 1.1 Cell culture aseptic techniques, media, culture techniques of cell or tissue types, variables affecting cell growth, different cell types in cultured tissues, contamination in tissue culture, preservation of cells
- 1.2 Specimen collection and handling peripheral blood specimens, bone marrow samples, amniotic fluid, solid tissue sources
- 1.3 Culture initiation and harvest techniques growth media, culture vessels, harvest for chromosomal analysis- slide making
- 1.4 Chromosome staining and banding G-banding, Q-banding, R-banding, C-banding, T-banding, Cd staining, G-11 banding
- 1.5 Karyotyping idlogram, metaphase spread, counting the metaphase spread, karyotyping

Unit 2: Chromosome Analysis

- 2.1 Chromosome analysis chromosome number, humans; chromosome shapes, karyotyping of human chromosomes normal variation and clinically significant chromosome abnormalities; Fragile sites and their detection,
- 2.2 Chromosome abnormalities translocations, inversions, insertions, deletions, duplications, ring chromosomes, marker chromosomes, double minutes; sex chromosome abnormalities
- 2.3 FISH methodology, probes, chromosome paints, applications, advantages and limitations
- 2.4 Microscopy operation and maintenance of bright-field microscopy, inverted and fluorescence microscopy
- 2.5 Screening Tests amniotic fluid sampling and analysis, second trimester maternal serum screening, first trimester Down syndrome screen, chorionic villi sampling, bone marrow aspiration and biopsy

- AGT Cytogenetics Laboratory Manual (2017) Arsham, Barch&Lawce, Wiley Blackwell publications
- 2. Human cytogenetics-A practical approach (2001) Rooney, Oxford University press
- 3. Manual of Cytogenetics in Reproductive Biology (2014). PankajTalwar, Jaypee Brothers Medical Publishers (P) Ltd.
- 4. Clinical Biochemistry (2013) Gaw, Cowan, Murphy, Srivastava and O'Reilly, Elsevier

BSC GENETICS II Year SEMESTER- IV DSC-3D

BS406: MICROBIAL GENETICS AND GENETIC ENGINEERING

Unit 1:Bacterial recombination and mapping

- 1.1 Bacteria- structure, techniques of cultivation, counting
- 1.2 Bacterial phenotypes- colony morphology, nutritional requirement, resistance and sensitivity
- 1.3 Transformation: discovery of transformation- competence of bacterial cells; mechanism of transformation; gene mapping by transformation.
- 1.4 Conjugation- unidirectional gene transfer- F⁺ and F⁻
- 1.5 High frequency recombination, interrupted mating experiment
- 1.6 Gene mapping by conjugation

Unit 2:Genetics of bacteriophages

- 2.1 Structure and classification of bacteriophages
- 2.2 Lytic cycle-infection of host cells; formation of viral components; maturation and release of virus particles
- 2.3 Lysogeny- nature of lysogeny; λ-phage, integration of viral genome into host genome; lysogenic stage and prophage cycle; factors governing lysogeny
- 2.4 Transduction: generalized transduction, co-transduction and linkage; Mapping by co-transduction
- 2.5 Specialized transduction- formation of specialized transducing particle from a λ -lysogen
- 2.6 Specialized transduction from λ gal and λ bio

Unit 3:Genetic engineering

- 3.1 Introduction to r-DNA technology; enzymes used in molecular cloning-restriction endonucleases, DNA modifying enzymes- methylases, polymerases, ligases and phosphatases
- 3.2 Vectors used in cloning: *E.Coli*, plasmid vectors- pBR322, pUC vectors; cosmids; shuttle vectors- yeast vectors
- 3.3 Genomic libraries: strategies for construction of genomic libraries
- 3.4 cDNA libraries: strategies for construction of cDNA libraries
- 3.5 Blotting techniques (southern, western & northern) and PCR
- 3.6 Screening for detection of cloned genes-antibiotic resistance, blue-white screening

Unit 4:Applications of genetic engineering

- 4.1 Gene productsinmedicine-Humulin, Erythropoietin, Growth hormone/Somatostatin,tPA, Interferon-y
- 4.2 DNA based vaccines; Subunit vaccines- Herpes simplex virus; Attenuated vaccines- Cholera
- 4.3 Environment- genetically engineered microorganisms for bioremediation, phytoremediation
- 4.4 Transgenic plants-Btcotton, Golden rice
- 4.5 Transgenic animals: Molecular pharming- Buffalo and Goat
- 4.6 Industrial products- Cheese and Yoghurt

PRACTICALS

PAPER IV (BS406): MICROBIAL GENETICS AND GENETIC ENGINEERING

- 1. Methods of sterilization, media preparation
- 2. Gram staining
- 3. Isolation, purification and maintenance of bacteria
- 4. Bacterial growth curve
- 5. Induction and isolation of mutants in bacteria
- 6. Preparation of competent cells of bacteria
- 7. Amplification of gene of interest by PCR
- 8. Restriction digestion analysis
- 9. Problems on restriction mapping

- 1. Microbial Genetics ByMaloy, Freifelder
- 2. Molecular GeneticsByGunther and Stent
- 3. MicrobiologyByPrescot
- 4. Genetic AnalysisBy Griffith, Suzuki and others
- 5. Microbiology: Concepts and ApplicationsByJohn Wiley
- 6. General Microbiology By Stanier
- 7. Microbiology ByPelczar
- 8. Introductory MicrobiologyByJ. Heritage
- 9. Fundamentals of Medical Biotechnology By Irfan Ali Khan and AtiyaKhanum